A proof of the irrationality of π and the rational powers of e

Franco Eugeni*
Gianluca Ippoliti

Dipartimento di Scienze della Comunicazione
Università degli studi di Teramo
Coste S. Agostino
I-64100 Teramo
Italy

Abstract

In this note we give a very short proof of irrationality of π, and a proof of the irrationality of the rational powers of e. The canonical proof of the irrationality of π is due to Lambert (1767), and the one for e to Euler (1737).

Keywords : Number theory, irrationality, π, e.

1. The irrationality of π

In this first section we give a proof of the irrationality of π which we gave first in [1]. We begin with the following:

Theorem 1.1. π^2 is irrational.

Proof. We suppose that π^2 is rational i.e. we suppose that there exist $a, b \in \mathbb{N}$, with $(a, b) = 1$, such that $\pi^2 = \frac{a}{b}$, because π^2 is positive.

Then there exists a number $m \in \mathbb{N}$ such that $\pi \frac{a^m}{m!} < 1$ (π is a finite quantity and the succession with generic term $\frac{a^n}{n!}$ is infinitesimal, for

E-mail: eugenif@tin.it

Journal of Interdisciplinary Mathematics
Vol. 9 (2006), No. 1, pp. 17–20
© Taru Publications